Recently published - More

Abstract

There is marked variability in vaccine efficacy among global populations. In particular, individuals in low- to middle-income countries have been shown to be less responsive to vaccines than those from developed nations. Several factors, including endemic infections, nutrition, genetics, and gut microbiome composition, have been proposed to underlie discrepancies in vaccine response. In this issue of the JCI, Kityo et al. evaluated response to yellow fever virus vaccine, inflammation, and lymphatic tissue architecture and fibrosis in three cohorts: two from the U.S. and one from Uganda. Compared with the U.S. subjects, the Ugandan cohort exhibited enhanced cytokine responses, increased lymph node fibrosis, reduced CD4+ T cell levels, and reduced vaccine response. Together, these results provide a link among chronic inflammation, damaged lymphoid architecture, and poor vaccine outcome, and set the stage for future studies to identify strategies to overcome these barriers.

Authors

Boris Julg, Galit Alter

×

Abstract

The discovery of HLA-B*57:01–associated abacavir hypersensitivity is a translational success story that eliminated adverse reactions to abacavir through pretreatment screening and defined a mechanistic model of an altered peptide repertoire. In this issue of the JCI, Cardone et al. have developed an HLA-B*57:01–transgenic mouse model and demonstrated that CD4+ T cells play a key role in mediating tolerance to the dramatically altered endogenous peptide repertoire induced by abacavir and postulate a known mechanism by which CD4+ T cells suppress DC maturation. This report potentially explains why 45% of HLA-B*57:01 carriers tolerate abacavir and provides a framework for future studies of HLA-restricted, T cell–mediated drug tolerance and hypersensitivity.

Authors

Elizabeth J. Phillips, Simon A. Mallal

×

Abstract

NOTCH1 is a prevalent signaling pathway in T cell acute lymphoblastic leukemia (T-ALL), but crucial NOTCH1 downstream signals and target genes contributing to T-ALL pathogenesis cannot be retrospectively analyzed in patients and thus remain ill defined. This information is clinically relevant, as initiating lesions that lead to cell transformation and leukemia-initiating cell (LIC) activity are promising therapeutic targets against the major hurdle of T-ALL relapse. Here, we describe the generation in vivo of a human T cell leukemia that recapitulates T-ALL in patients, which arises de novo in immunodeficient mice reconstituted with human hematopoietic progenitors ectopically expressing active NOTCH1. This T-ALL model allowed us to identify CD44 as a direct NOTCH1 transcriptional target and to recognize CD44 overexpression as an early hallmark of preleukemic cells that engraft the BM and finally develop a clonal transplantable T-ALL that infiltrates lymphoid organs and brain. Notably, CD44 is shown to support crucial BM niche interactions necessary for LIC activity of human T-ALL xenografts and disease progression, highlighting the importance of the NOTCH1/CD44 axis in T-ALL pathogenesis. The observed therapeutic benefit of anti-CD44 antibody administration in xenotransplanted mice holds great promise for therapeutic purposes against T-ALL relapse.

Authors

Marina García-Peydró, Patricia Fuentes, Marta Mosquera, María J. García-León, Juan Alcain, Antonio Rodríguez, Purificación García de Miguel, Pablo Menéndez, Kees Weijer, Hergen Spits, David T. Scadden, Carlos Cuesta-Mateos, Cecilia Muñoz-Calleja, Francisco Sánchez-Madrid, María L. Toribio

×

Abstract

Activation of non-neuronal microglia is thought to play a causal role in spinal processing of neuropathic pain. To specifically investigate microglia-mediated effects in a model of neuropathic pain and overcome the methodological limitations of previous approaches exploring microglia function upon nerve injury, we selectively ablated resident microglia by intracerebroventricular ganciclovir infusion into male CD11b-HSVTK–transgenic mice, which was followed by a rapid, complete, and persistent (23 weeks) repopulation of the CNS by peripheral myeloid cells. In repopulated mice that underwent sciatic nerve injury, we observed a normal response to mechanical stimuli, but an absence of thermal hypersensitivity ipsilateral to the injured nerve. Furthermore, we found that neuronal expression of calcitonin gene–related peptide (CGRP), which is a marker of neurons essential for heat responses, was diminished in the dorsal horn of the spinal cord in repopulated mice. These findings identify distinct mechanisms for heat and mechanical hypersensitivity and highlight a crucial contribution of CNS myeloid cells in the facilitation of noxious heat.

Authors

Stefanie Kälin, Kelly R. Miller, Roland E. Kälin, Marina Jendrach, Christian Witzel, Frank L. Heppner

×

Abstract

PIM kinase family members play a crucial role in promoting cell survival and proliferation via phosphorylation of their target substrates. In this study, we investigated the role of the PIM kinases with respect to T cell responses in transplantation and tumor immunity. We found that the PIM-2 isoform negatively regulated T cell responses to alloantigen, in contrast to the PIM-1 and PIM-3 isoforms, which acted as positive regulators. T cells deficient in PIM-2 demonstrated increased T cell differentiation toward Th1 subset, proliferation, and migration to target organs after allogeneic bone marrow transplantation, resulting in dramatically accelerated graft-versus-host disease (GVHD) severity. Restoration of PIM-2 expression markedly attenuated the pathogenicity of PIM-2–deficient T cells to induce GVHD. On the other hand, mice deficient in PIM-2 readily rejected syngeneic tumor, which was primarily dependent on CD8+ T cells. Furthermore, silencing PIM-2 in polyclonal or antigen-specific CD8+ T cells substantially enhanced their antitumor response in adoptive T cell immunotherapy. We conclude that PIM-2 kinase plays a prominent role in suppressing T cell responses, and provide a strong rationale to target PIM-2 for cancer immunotherapy.

Authors

Anusara Daenthanasanmak, Yongxia Wu, Supinya Iamsawat, Hung D. Nguyen, David Bastian, MengMeng Zhang, M. Hanief Sofi, Shilpak Chatterjee, Elizabeth G. Hill, Shikhar Mehrotra, Andrew S. Kraft, Xue-Zhong Yu

×

Abstract

Vaccine responses vary by geographic location. We have previously described how HIV-associated inflammation leads to fibrosis of secondary lymph nodes (LNs) and T cell depletion. We hypothesized that other infections may cause LN inflammation and fibrosis, in a process similar to that seen in HIV infection, which may lead to T cell depletion and affect vaccine responses. We studied LNs of individuals from Kampala, Uganda, before and after yellow fever vaccination (YFV) and found fibrosis in LNs that was similar to that seen in HIV infection. We found blunted antibody responses to YFV that correlated to the amount of LN fibrosis and loss of T cells, including T follicular helper cells. These data suggest that LN fibrosis is not limited to HIV infection and may be associated with impaired immunologic responses to vaccines. This may have an impact on vaccine development, especially for infectious diseases prevalent in the developing world.

Authors

Cissy Kityo, Krystelle Nganou Makamdop, Meghan Rothenberger, Jeffrey G. Chipman, Torfi Hoskuldsson, Gregory J. Beilman, Bartosz Grzywacz, Peter Mugyenyi, Francis Ssali, Rama S. Akondy, Jodi Anderson, Thomas E. Schmidt, Thomas Reimann, Samuel P. Callisto, Jordan Schoephoerster, Jared Schuster, Proscovia Muloma, Patrick Ssengendo, Eirini Moysi, Constantinos Petrovas, Ray Lanciotti, Lin Zhang, Maria T. Arévalo, Benigno Rodriguez, Ted M. Ross, Lydie Trautmann, Rafick-Pierre Sekaly, Michael M. Lederman, Richard A. Koup, Rafi Ahmed, Cavan Reilly, Daniel C. Douek, Timothy W. Schacker

×

Abstract

Ischemia-reperfusion injury, a form of sterile inflammation, is the leading risk factor for both short-term mortality following pulmonary transplantation and chronic lung allograft dysfunction. While it is well recognized that neutrophils are critical mediators of acute lung injury, processes that guide their entry into pulmonary tissue are not well understood. Here, we found that CCR2+ classical monocytes are necessary and sufficient for mediating extravasation of neutrophils into pulmonary tissue during ischemia-reperfusion injury following hilar clamping or lung transplantation. The classical monocytes were mobilized from the host spleen, and splenectomy attenuated the recruitment of classical monocytes as well as the entry of neutrophils into injured lung tissue, which was associated with improved graft function. Neutrophil extravasation was mediated by MyD88-dependent IL-1β production by graft-infiltrating classical monocytes, which downregulated the expression of the tight junction–associated protein ZO-2 in pulmonary vascular endothelial cells. Thus, we have uncovered a crucial role for classical monocytes, mobilized from the spleen, in mediating neutrophil extravasation, with potential implications for targeting of recipient classical monocytes to ameliorate pulmonary ischemia-reperfusion injury in the clinic.

Authors

Hsi-Min Hsiao, Ramiro Fernandez, Satona Tanaka, Wenjun Li, Jessica H. Spahn, Stephen Chiu, Mahzad Akbarpour, Daniel Ruiz-Perez, Qiang Wu, Cem Turam, Davide Scozzi, Tsuyoshi Takahashi, Hannah P. Luehmann, Varun Puri, G.R. Scott Budinger, Alexander S. Krupnick, Alexander V. Misharin, Kory J. Lavine, Yongjian Liu, Andrew E. Gelman, Ankit Bharat, Daniel Kreisel

×

Abstract

Adverse drug reactions (ADRs) are a major obstacle to drug development, and some of these, including hypersensitivity reactions to the HIV reverse transcriptase inhibitor abacavir (ABC), are associated with HLA alleles, particularly HLA-B*57:01. However, not all HLA-B*57:01+ patients develop ADRs, suggesting that in addition to the HLA genetic risk, other factors may influence the outcome of the response to the drug. To study HLA-linked ADRs in vivo, we generated HLA-B*57:01–Tg mice and show that, although ABC activated Tg mouse CD8+ T cells in vitro in a HLA-B*57:01–dependent manner, the drug was tolerated in vivo. In immunocompetent Tg animals, ABC induced CD8+ T cells with an anergy-like phenotype that did not lead to ADRs. In contrast, in vivo depletion of CD4+ T cells prior to ABC administration enhanced DC maturation to induce systemic ABC-reactive CD8+ T cells with an effector-like and skin-homing phenotype along with CD8+ infiltration and inflammation in drug-sensitized skin. B7 costimulatory molecule blockade prevented CD8+ T cell activation. These Tg mice provide a model for ABC tolerance and for the generation of HLA-B*57:01–restricted, ABC-reactive CD8+ T cells dependent on both HLA genetic risk and immunoregulatory host factors.

Authors

Marco Cardone, Karla Garcia, Mulualem E. Tilahun, Lisa F. Boyd, Sintayehu Gebreyohannes, Masahide Yano, Gregory Roderiquez, Adovi D. Akue, Leslie Juengst, Elliot Mattson, Suryatheja Ananthula, Kannan Natarajan, Montserrat Puig, David H. Margulies, Michael A. Norcross

×

Abstract

Neurofibromatosis type 1 associates with multiple neoplasms, and the Schwann cell tumor neurofibroma is the most prevalent. A hallmark feature of neurofibroma is mast cell infiltration, which is recruited by chemoattractant stem cell factor (SCF) and has been suggested to sustain neurofibroma tumorigenesis. In the present study, we use new, genetically engineered Scf mice to decipher the contributions of tumor-derived SCF and mast cells to neurofibroma development. We demonstrate that mast cell infiltration is dependent on SCF from tumor Schwann cells. However, removal of mast cells by depleting the main SCF source only slightly affects neurofibroma progression. Other inflammation signatures show that all neurofibromas are associated with high levels of macrophages regardless of Scf status. These findings suggest an active inflammation in neurofibromas and partly explain why mast cell removal alone is not sufficient to relieve tumor burden in this experimental neurofibroma model. Furthermore, we show that plexiform neurofibromas are highly associated with injury-prone spinal nerves that are close to flexible vertebras. In summary, our study details the role of inflammation in neurofibromagenesis. Our data indicate that prevention of inflammation and possibly also nerve injury at the observed tumor locations are therapeutic approaches for neurofibroma prophylaxis and that such treatment should be explored.

Authors

Chung-Ping Liao, Reid C. Booker, Jean-Philippe Brosseau, Zhiguo Chen, Juan Mo, Edem Tchegnon, Yong Wang, D. Wade Clapp, Lu Q. Le

×

In-Press Preview - More

Abstract

Broad-spectrum antibiotics are widely used in patients on intensive care units (ICU), many of which develop hospital-acquired infections with Pseudomonas aeruginosa. Although preceding antimicrobial therapy is known as a major risk factor for P. aeruginosa-induced pneumonia, the underlying mechanisms remain incompletely understood. Here we demonstrate that depletion of the resident microbiota by broad-spectrum antibiotic treatment inhibited TLR-dependent production of a proliferation inducing ligand (APRIL), resulting in a secondary IgA deficiency in the lung in mice and human ICU patients. Microbiota-dependent local IgA contributed to early antibacterial defense against P. aeruginosa. Consequently, Pseudomonas-binding IgA purified from lamina propria culture or IgA hybridomas enhanced resistance of antibiotic-treated mice to P. aeruginosa infection after transnasal substitution. Our study provides a mechanistic explanation for the well-documented risk of P. aeruginosa infection following antimicrobial therapy, and we propose local administration of IgA as a novel prophylactic strategy.

Authors

Oliver H. Robak, Markus M. Heimesaat, Andrey A. Kruglov, Sandra Prepens, Justus Ninnemann, Birgitt Gutbier, Katrin Reppe, Hubertus Hochrein, Mark Suter, Carsten J. Kirschning, Veena Marathe, Jan Buer, Mathias W. Hornef, Markus Schnare, Pascal Schneider, Martin Witzenrath, Stefan Bereswill, Ulrich Steinhoff, Norbert Suttorp, Leif E. Sander, Catherine Chaput, Bastian Opitz

×

Abstract

Enterotoxigenic Escherichia coli (ETEC) infections are highly prevalent in developing countries where clinical presentations range from asymptomatic colonization to severe cholera-like illness. The molecular basis for these varied presentations, that may involve strain-specific virulence features as well as host factors, have not been elucidated. We demonstrate that when challenged with ETEC strain H10407, originally isolated from a case of cholera-like illness, blood group A human volunteers developed severe diarrhea more frequently than individuals from other blood groups. Interestingly, a diverse population of ETEC strains, including H10407, secrete a novel adhesin molecule, EtpA. As many bacterial adhesins also agglutinate red blood cells, we combined the use of glycan arrays, biolayer inferometry, and non-canonical amino acid labeling with hemagglutination studies to demonstrate that EtpA is a dominant ETEC blood group A specific lectin/hemagglutinin. Importantly, we also show that EtpA interacts specifically with glycans expressed on intestinal epithelial cells from blood group A individuals, and that EtpA-mediated bacterial-host interactions accelerate bacterial adhesion and the effective delivery both heat-labile and heat-stable toxins of ETEC. Collectively, these data provide additional insight into the complex molecular basis of severe ETEC diarrheal illness that may inform rational design of vaccines to protect those at highest risk.

Authors

Pardeep Kumar, F. Matthew Kuhlmann, Subhra Chakroborty, A. Louis Bourgeois, Jennifer Foulke-Abel, Brunda Tumala, Tim J. Vickers, David A. Sack, Barbara DeNearing, Clayton D. Harro, W. Shea Wright, Jeffrey C. Gildersleeve, Matthew A. Ciorba, Srikanth Santhanam, Chad K. Porter, Ramiro L. Gutierrez, Michael G. Prouty, Mark S. Riddle, Alexander Polino, Alaullah Sheikh, Mark Donowitz, James M. Fleckenstein

×

Abstract

Cancer progression is associated with alterations of intra- and extramedullary hematopoiesis to support a systemic tumor-promoting myeloid response. However, the functional specialty, mechanism, and clinical relevance of extramedullary hematopoiesis (EMH) remain unclear. Here we showed that the heightened splenic myelopoiesis in tumor-bearing hosts was not only characterized by the accumulation of myeloid precursors, but also associated with profound functional alterations of splenic early hematopoietic stem/progenitor cells (HSPCs). With the distinct capability to produce and respond to granulocyte-macrophage colony-stimulating factor (GM-CSF), these splenic HSPCs were “primed” and committed to generating immunosuppressive myeloid cells. Mechanistically, the CCL2-CCR2 axis-dependent recruitment and the subsequent local education by the splenic stroma were critical for eliciting this splenic HSPC response. Selective abrogation of this splenic EMH was sufficient to synergistically enhance the therapeutic efficacy of immune checkpoint blockade. Clinically, patients with different types of solid tumors exhibited increased splenic HSPC levels associated with poor survival. These findings reveal a unique and important role of splenic hematopoiesis in the tumor-associated myelopoiesis.

Authors

Chong Wu, Huiheng Ning, Mingyu Liu, Jie Lin, Shufeng Luo, Wenjie Zhu, Jing Xu, Wen-Chao Wu, Jing Liang, Chun-Kui Shao, Jiaqi Ren, Bin Wei, Jun Cui, Min-Shan Chen, Limin Zheng

×

Abstract

Tumor angiogenesis occurs through regulation of genes that orchestrate endothelial sprouting and vessel maturation, including deposition of a vessel-associated extracellular matrix. CD93 is a transmembrane receptor that is up-regulated in tumor vessels in many cancers, including high-grade glioma. Here, we demonstrate that CD93 regulates integrin-β1-signaling and organization of fibronectin fibrillogenesis during tumor vascularization. In endothelial cells and mouse retina, CD93 was found to be expressed in endothelial filopodia and to promote filopodia formation. The CD93 localization to endothelial filopodia was stabilized by interaction with multimerin-2 (MMRN2), which inhibited its proteolytical cleavage. The CD93-MMRN2 complex was required for activation of integrin-β1, phosphorylation of focal adhesion kinase (FAK) and fibronectin fibrillogenesis in endothelial cells. Consequently, tumor vessels in gliomas implanted orthotopically in CD93-deficient mice showed diminished activation of integrin-β1 and lacked organization of fibronectin into fibrillar structures. These findings demonstrate a key role of CD93 in vascular maturation and organization of the extracellular matrix in tumors, identifying it as a potential target for therapy.

Authors

Roberta Lugano, Kalyani Vemuri, Di Yu, Michael Bergqvist, Anja Smits, Magnus Essand, Staffan Johansson, Elisabetta Dejana, Anna Dimberg

×

Abstract

Tumor Necrosis Factor (TNF) is an important mediator in numerous inflammatory diseases, e.g., in inflammatory bowel diseases (IBD). In IBD, acute increases in TNF production can lead to disease flares. Glucocorticoids (GCs), which are steroids that bind and activate the glucocorticoid receptor (GR), are able to protect animals and humans against acute TNF-induced inflammatory symptoms. Mice with a poor transcriptional response of GR-dimer-dependent target genes were studied in a model of TNF-induced lethal inflammation. In contrast to the GRwt/wt mice, these GRdim/dim mice displayed a significant increase in TNF sensitivity and a lack of protection by the GC dexamethasone (DEX). Unchallenged GRdim/dim mice had a strong interferon-stimulated gene (ISG) signature, along with STAT1 upregulation and phosphorylation. This ISG signature was gut specific and, based on our studies with antibiotics, depended on the gut microbiota. GR dimers directly bound to short DNA sequences in the STAT1 promoter known as inverted repeat negative GRE (IR-nGRE) elements. Poor control of STAT1 in GRdim/dim mice led to failure to repress ISG genes resulting in excessive necroptosis induction by TNF. Our findings support a critical interplay between gut microbiota, interferons, necroptosis and GR in both the basal response to acute inflammatory challenges and in the pharmacological intervention by GCs.

Authors

Marlies Ballegeer, Kelly Van Looveren, Steven Timmermans, Melanie Eggermont, Sofie Vandevyver, Fabien Thery, Karen Dendoncker, Jolien Souffriau, Jolien Vandewalle, Lise Van Wyngene, Riet De Rycke, Nozomi Takahashi, Peter Vandenabeele, Jan Tuckermann, Holger M. Reichardt, Francis Impens, Rudi Beyaert, Karolien De Bosscher, Roosmarijn E. Vandenbroucke, Claude Libert

×

Advertisement

May 2018

128 5 cover

May 2018 Issue

On the cover:
Defensive exfoliation backfires against ascending uterine infection

In this issue, Vornhagen et al. report that group B streptococcus infection is not impeded by defensive epithelial exfoliation; rather than limit colonization, the exfoliation facilitates bacterial migration, boosting the incidence of uterine infection that increases preterm birth risk. The cover image shows streptococcal bacteria present on exfoliated vaginal epithelial cells at high magnification.

×
Jci tm 2018 05

May 2018 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Cellular senescence in human disease

Series edited by Jan van Deursen

Cellular senescence is a normal consequence of aging, resulting from lifelong accumulation of DNA damage that triggers an end to cell replication. Although senescent cells no longer divide, they persist in their tissue of origin and develop characteristics that can hasten and exacerbate age-related disease. This series addresses the contribution of cellular senescence to cardiovascular, neurodegenerative, and arthritic disorders as well as the senescent phenotypes in various tissues and cell types. In addition to their cell-intrinsic effects, senescent cells develop the ability to negatively influence healthy neighboring cells and immune cells by secreting senescence-associated set of cytokines and mediators known as the SASP. These reviews also highlight ongoing efforts to accurately identify, target, and eliminate senescent cells or otherwise combat their deleterious effects in disease. One day, this work may provide the basis for therapies targeting aging cells in multiple organs.

×