Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
An inversion involving the mouse Shh locus results in brachydactyly through dysregulation of Shh expression
Michael Niedermaier, … , Paul B. Selby, Stefan Mundlos
Michael Niedermaier, … , Paul B. Selby, Stefan Mundlos
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):900-909. https://doi.org/10.1172/JCI23675.
View: Text | PDF
Categories: Article Bone biology

An inversion involving the mouse Shh locus results in brachydactyly through dysregulation of Shh expression

  • Text
  • PDF
Abstract

Short digits (Dsh) is a radiation-induced mouse mutant. Homozygous mice are characterized by multiple defects strongly resembling those resulting from Sonic hedgehog (Shh) inactivation. Heterozygous mice show a limb reduction phenotype with fusion and shortening of the proximal and middle phalanges in all digits, similar to human brachydactyly type A1, a condition caused by mutations in Indian hedgehog (IHH). We mapped Dsh to chromosome 5 in a region containing Shh and were able to demonstrate an inversion comprising 11.7 Mb. The distal breakpoint is 13.298 kb upstream of Shh, separating the coding sequence from several putative regulatory elements identified by interspecies comparison. The inversion results in almost complete downregulation of Shh expression during E9.5–E12.5, explaining the homozygous phenotype. At E13.5 and E14.5, however, Shh is upregulated in the phalangeal anlagen of Dsh/+ mice, at a time point and in a region where WT Shh is never expressed. The dysregulation of Shh expression causes the local upregulation of hedgehog target genes such as Gli1-3, patched, and Pthlh, as well as the downregulation of Ihh and Gdf5. This results in shortening of the digits through an arrest of chondrocyte differentiation and the disruption of joint development.

Authors

Michael Niedermaier, Georg C. Schwabe, Stephan Fees, Anne Helmrich, Norbert Brieske, Petra Seemann, Jochen Hecht, Volkhard Seitz, Sigmar Stricker, Gundula Leschik, Evelin Schrock, Paul B. Selby, Stefan Mundlos

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Dsh/Dsh a regulatory mutation of Shh. (A) Phenotype of E17.5 embryos. Al...
Dsh/Dsh a regulatory mutation of Shh. (A) Phenotype of E17.5 embryos. Alizarin red/alcian blue–stained skeletal preparations below. Dsh/Dsh, Dsh/+;Shh+/–, and Shh–/– embryos show a nearly identical phenotype. (B) Quantitative RT-PCR from WT and Dsh/Dsh RNA samples obtained from E10.5, E11.5, E12.5, and E13.5 embryos. Bars represent levels (± SD) of Shh expression relative to WT E10.5.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts