Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Increased salt consumption induces body water conservation and decreases fluid intake
Natalia Rakova, … , Friedrich C. Luft, Jens Titze
Natalia Rakova, … , Friedrich C. Luft, Jens Titze
Published May 1, 2017; First published April 17, 2017
Citation Information: J Clin Invest. 2017;127(5):1932-1943. https://doi.org/10.1172/JCI88530.
View: Text | PDF
Categories: Clinical Medicine Metabolism Nephrology

Increased salt consumption induces body water conservation and decreases fluid intake

  • Text
  • PDF
Abstract

BACKGROUND. The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions.

METHODS. Over the course of 2 separate space flight simulation studies of 105 and 205 days’ duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance.

RESULTS. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion.

CONCLUSION. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion.

FUNDING. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO, Coppenrath und Wiese, ENERVIT, HIPP, Katadyn, Kellogg, Molda, and Unilever.

Authors

Natalia Rakova, Kento Kitada, Kathrin Lerchl, Anke Dahlmann, Anna Birukov, Steffen Daub, Christoph Kopp, Tetyana Pedchenko, Yahua Zhang, Luis Beck, Bernd Johannes, Adriana Marton, Dominik N. Müller, Manfred Rauh, Friedrich C. Luft, Jens Titze

×

Figure 1

Time series data presentation and mixed linear model analysis to visualize the effect of increasing salt intake and the resulting Na+ excretion on water intake and urine volume formation.

Options: View larger image (or click on image) Download as PowerPoint
Time series data presentation and mixed linear model analysis to visuali...
(A) Time series of 24-hour sodium excretion (UNaV), urine volume, and water intake in the representative subject 54 during the 205-day experiment. (B) Average fluid intake per salt intake phase in all 10 subjects (n = 1,646). (C) Quantification of the changes in fluid intake per salt intake phase or per 24-hour UNaV tertile. (D) Average urine volume per salt intake phase in the same subjects (n = 1,644). (E) Quantification of the changes in urine volume per salt intake phase or per UNaV tertile. (F) Average 24-hour UNaV per salt intake phase in the same subjects (n = 1,646). (G) Quantification of the changes in UNaV per salt intake phase or per UNaV tertile. Data are expressed as the average ± SD (B, D, and F) or as the Δ change ± SEM (C, E, and G). Data were statistically analyzed by mixed linear model. Details on statistical analysis for Figure 1 are provided in the Supplemental Materials (page 28).
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts