Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Virology

  • 79 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 7
  • 8
  • Next →
Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection
Huanle Luo, … , Patricia V. Aguilar, Tian Wang
Huanle Luo, … , Patricia V. Aguilar, Tian Wang
Published September 24, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99902.
View: Text | PDF

Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection

  • Text
  • PDF
Abstract

The E3 ubiquitin ligase Pellino 1 (Peli1) is a microglia-specific mediator of autoimmune encephalomyelitis. Its role in neurotropic flavivirus infection is largely unknown. Here, we report that mice deficient in Peli1 (Peli1–/–) were more resistant to lethal West Nile virus (WNV) infection and exhibited reduced viral loads in tissues and attenuated brain inflammation. Peli1 mediates chemokine and proinflammatory cytokine production in microglia and promotes T cell and macrophage infiltration into the CNS. Unexpectedly, Peli1 was required for WNV entry and replication in mouse macrophages and mouse and human neurons and microglia. It was also highly expressed on WNV-infected neurons and adjacent inflammatory cells from postmortem patients who died of acute WNV encephalitis. WNV passaged in Peli1–/– macrophages or neurons induced a lower viral load and impaired activation in WT microglia and thereby reduced lethality in mice. Smaducin-6, which blocks interactions between Peli1 and IRAK1, RIP1, and IKKε, did not inhibit WNV-triggered microglia activation. Collectively, our findings suggest a nonimmune regulatory role for Peli1 in promoting microglia activation during WNV infection and identify a potentially novel host factor for flavivirus cell entry and replication.

Authors

Huanle Luo, Evandro R. Winkelmann, Shuang Zhu, Wenjuan Ru, Elizabeth Mays, Jesus A. Silvas, Lauren L. Vollmer, Junling Gao, Bi-Hung Peng, Nathen E. Bopp, Courtney Cromer, Chao Shan, Guorui Xie, Guangyu Li, Robert Tesh, Vsevolod L. Popov, Pei-Yong Shi, Shao-Cong Sun, Ping Wu, Robyn S. Klein, Shao-Jun Tang, Wenbo Zhang, Patricia V. Aguilar, Tian Wang

×

Antigenic sites in influenza H1 hemagglutinin display species-specific immunodominance
Sean T.H. Liu, … , Florian Krammer, Peter Palese
Sean T.H. Liu, … , Florian Krammer, Peter Palese
Published September 6, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122895.
View: Text | PDF

Antigenic sites in influenza H1 hemagglutinin display species-specific immunodominance

  • Text
  • PDF
Abstract

Hemagglutination inhibition (HI) titers are a major correlate of protection for influenza-related illness. The influenza virus hemagglutinin possesses antigenic sites that are the targets of HI active antibodies. Here, a panel of mutant viruses each lacking a classically defined antigenic site was created to compare the species-specific immunodominance of the antigenic sites in a clinically relevant hemagglutinin. HI active antibodies of antisera from influenza-virus infected mice targeted sites Sb and Ca2. HI active antibodies of guinea pigs were not directed against any specific antigenic site, although trends were observed towards Sb, Ca2, and Sa. HI titers of antisera from infected ferrets were significantly affected by site Sa. HI active antibodies of adult humans followed yet another immunodominance pattern, where sites Sb and Sa were immunodominant. When comparing the HI profiles between different species by antigenic cartography, animals and humans grouped separately. This study provides characterizations of the antibody-mediated immune responses against the head domain of a recent H1 hemagglutinin in animals and humans.

Authors

Sean T.H. Liu, Mohammad Amin Behzadi, Weina Sun, Alec W. Freyn, Wen-Chun Liu, Felix Broecker, Randy A. Albrecht, Nicole M. Bouvier, Viviana Simon, Raffael Nachbagauer, Florian Krammer, Peter Palese

×

Zika virus infects human testicular tissue and germ cells
Giulia Matusali, … , Anna Le Tortorec, Nathalie Dejucq-Rainsford
Giulia Matusali, … , Anna Le Tortorec, Nathalie Dejucq-Rainsford
Published July 31, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121735.
View: Text | PDF

Zika virus infects human testicular tissue and germ cells

  • Text
  • PDF
Abstract

Zika virus (ZIKV) is a teratogenic mosquito-borne flavivirus which can be sexually transmitted from man to woman. High viral loads and prolonged viral shedding in semen suggest that ZIKV replicates within the human male genital tract, but its target organs are unknown. Using ex vivo infection of organotypic cultures, we demonstrated here that ZIKV replicates in human testicular tissue and infects a broad range of cell types, including germ cells, which we also identified as infected in the semen from ZIKV-infected donors. ZIKV had no major deleterious effect on the morphology and hormonal production of the human testis explants. Infection induced a broad antiviral response but no interferon up-regulation and minimal pro-inflammatory response in testis explants, with no cytopathic effect. Finally, we studied ZIKV infection in mouse testis, and compared it to human infection. This study provides key insights into how ZIKV may persist in semen and alter semen parameters, as well as a valuable tool for testing antiviral agents.

Authors

Giulia Matusali, Laurent Houzet, Anne-Pascale Satie, Dominique Mahé, Florence Aubry, Thérèse Couderc, Julie Frouard, Salomé Bourgeau, Karim Bensalah, Sylvain Lavoué, Guillaume Joguet, Louis Bujan, André Cabié, Gleide F. Avelar, Marc Lecuit, Anna Le Tortorec, Nathalie Dejucq-Rainsford

×

Human herpesvirus–encoded kinase induces B cell lymphomas in vivo
Penny M. Anders, … , Dirk P. Dittmer, Blossom Damania
Penny M. Anders, … , Dirk P. Dittmer, Blossom Damania
Published May 7, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97053.
View: Text | PDF

Human herpesvirus–encoded kinase induces B cell lymphomas in vivo

  • Text
  • PDF
Abstract

Kaposi’s sarcoma–associated herpesvirus (KSHV) is a gammaherpesvirus that is the etiological agent of the endothelial cell cancer Kaposi’s sarcoma (KS) and 2 B cell lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD). KSHV ORF36, also known as viral protein kinase (vPK), is a viral serine/threonine kinase. We previously reported that KSHV vPK enhances cell proliferation and mimics cellular S6 kinase to phosphorylate ribosomal protein S6, a protein involved in protein synthesis. We created a mouse model to analyze the function of vPK in vivo. We believe this is the first mouse tumor model of a viral kinase encoded by a pathogenic human virus. We observed increased B cell activation in the vPK transgenic mice compared with normal mice. We also found that, over time, vPK transgenic mice developed a B cell hyperproliferative disorder and/or a high-grade B cell non-Hodgkin lymphoma at a greatly increased incidence compared with littermate controls. This mouse model shows that a viral protein kinase is capable of promoting B cell activation and proliferation as well as augmenting lymphomagenesis in vivo and may therefore contribute to the development of viral cancers.

Authors

Penny M. Anders, Nathan D. Montgomery, Stephanie A. Montgomery, Aadra P. Bhatt, Dirk P. Dittmer, Blossom Damania

×

Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice
Xilin Wu, … , Paul Zhou, Zhiwei Chen
Xilin Wu, … , Paul Zhou, Zhiwei Chen
Published February 20, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96764.
View: Text | PDF

Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice

  • Text
  • PDF
Abstract

The discovery of an HIV-1 cure remains a medical challenge because the virus rebounds quickly after the cessation of combination antiretroviral drug therapy (cART). Here, we investigate the potential of an engineered tandem bi-specific broadly neutralizing antibody (bs-bnAb) as an innovative product for HIV-1 prophylactic and therapeutic interventions. We discovered that by preserving two scFv binding domains of each parental bnAb, a single-gene-encoded tandem bs-bnAb, namely BiIA-SG, displayed significantly improved breadth and potency. BiIA-SG neutralized all 124 HIV-1 pseudotyped viruses tested, including global subtypes/recombinant forms, transmitted/founder viruses, and variants less or not susceptible to parental and many bnAbs, with an average IC50 value of 0.073 µ/ml (range < 0.001 to 1.03 µg/ml). In humanized mice, an injection of BiIA-SG conferred sterile protection when administered prior to challenges with diverse live HIV-1 stains. Moreover, while BiIA-SG delayed viral rebound in a short-term therapeutic setting when combined with cART, a single injection of AAV-transferred BiIA-SG gene resulted dose-dependently in prolonged in vivo expression of BiIA-SG, which was associated with complete viremia control and subsequent elimination of infected cells in humanized mice. These results warrant the clinical development of BiIA-SG as a promising bs-bnAb-based biomedical intervention for prevention and treatment of HIV-1 infections.

Authors

Xilin Wu, Jia Guo, Mengyue Niu, Minghui An, Li Liu, Hui Wang, Xia Jin, Qi Zhang, Ka Shing Lam, Tongjin Wu, Hua Wang, Qian Wang, Yanhua Du, Jingjing Li, Lin Cheng, Hang Ying Tang, Hong Shang, Linqi Zhang, Paul Zhou, Zhiwei Chen

×

Microglia are required for protection against lethal coronavirus encephalitis in mice
D. Lori Wheeler, … , David K. Meyerholz, Stanley Perlman
D. Lori Wheeler, … , David K. Meyerholz, Stanley Perlman
Published January 29, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97229.
View: Text | PDF

Microglia are required for protection against lethal coronavirus encephalitis in mice

  • Text
  • PDF
Abstract

Recent findings have highlighted the role of microglia in orchestrating normal development and refining neural network connectivity in the healthy CNS. Microglia are not only vital cells in maintaining CNS homeostasis, but also respond to injury, infection, and disease by undergoing proliferation and changes in transcription and morphology. A better understanding of the specific role of microglia in responding to viral infection is complicated by the presence of nonmicroglial myeloid cells with potentially overlapping function in the healthy brain and by the rapid infiltration of hematopoietic myeloid cells into the brain in diseased states. Here, we used an inhibitor of colony-stimulating factor 1 receptor (CSF1R) that depletes microglia to examine the specific roles of microglia in response to infection with the mouse hepatitis virus (MHV), a neurotropic coronavirus. Our results show that microglia were required during the early days after infection to limit MHV replication and subsequent morbidity and lethality. Additionally, microglia depletion resulted in ineffective T cell responses. These results reveal nonredundant, critical roles for microglia in the early innate and virus-specific T cell responses and for subsequent host protection from viral encephalitis.

Authors

D. Lori Wheeler, Alan Sariol, David K. Meyerholz, Stanley Perlman

×

A digenic human immunodeficiency characterized by IFNAR1 and IFNGR2 mutations
Rodrigo Hoyos-Bachiloglu, … , Mofareh AlZahrani, Raif S. Geha
Rodrigo Hoyos-Bachiloglu, … , Mofareh AlZahrani, Raif S. Geha
Published November 6, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI93486.
View: Text | PDF

A digenic human immunodeficiency characterized by IFNAR1 and IFNGR2 mutations

  • Text
  • PDF
Abstract

Primary immunodeficiencies are often monogenic disorders characterized by vulnerability to specific infectious pathogens. Here, we performed whole-exome sequencing of a patient with disseminated Mycobacterium tuberculosis, Streptococcus viridians bacteremia, and cytomegalovirus (CMV) viremia and identified mutations in 2 genes that regulate distinct IFN pathways. The patient had a homozygous frameshift deletion in IFNGR2, which encodes the signal transducing chain of the IFN-γ receptor, that resulted in minimal protein expression and abolished downstream signaling. The patient also harbored a homozygous deletion in IFNAR1 (IFNAR1*557Gluext*46), which encodes the IFN-α receptor signaling subunit. The IFNAR1*557Gluext*46 resulted in replacement of the stop codon with 46 additional codons at the C-terminus. The level of IFNAR1*557Gluext*46 mutant protein expressed in patient fibroblasts was comparable to levels of WT IFNAR1 in control fibroblasts. IFN-α–induced signaling was impaired in the patient fibroblasts, as evidenced by decreased STAT1/STAT2 phosphorylation, nuclear translocation of STAT1, and expression of IFN-α–stimulated genes critical for CMV immunity. Pretreatment with IFN-α failed to suppress CMV protein expression in patient fibroblasts, whereas expression of WT IFNAR1 restored IFN-α–mediated suppression of CMV. This study identifies a human IFNAR1 mutation and describes a digenic immunodeficiency specific to type I and type II IFNs.

Authors

Rodrigo Hoyos-Bachiloglu, Janet Chou, Catherine N. Sodroski, Abdallah Beano, Wayne Bainter, Magdalena Angelova, Eman Al Idrissi, Murad K. Habazi, Hamza Ali Alghamdi, Fahd Almanjomi, Mohamed Al Shehri, Nagi Elsidig, Morsi Alaa Eldin, David M. Knipe, Mofareh AlZahrani, Raif S. Geha

×

siRNA rescues nonhuman primates from advanced Marburg and Ravn virus disease
Emily P. Thi, … , Ian MacLachlan, Thomas W. Geisbert
Emily P. Thi, … , Ian MacLachlan, Thomas W. Geisbert
Published November 6, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI96185.
View: Text | PDF

siRNA rescues nonhuman primates from advanced Marburg and Ravn virus disease

  • Text
  • PDF
Abstract

Ebolaviruses and marburgviruses belong to the family Filoviridae and cause high lethality in infected patients. There are currently no licensed filovirus vaccines or antiviral therapies. The development of broad-spectrum therapies against members of the Marburgvirus genus, including Marburg virus (MARV) and Ravn virus (RAVV), is difficult because of substantial sequence variability. RNAi therapeutics offer a potential solution, as identification of conserved target nucleotide sequences may confer activity across marburgvirus variants. Here, we assessed the therapeutic efficacy of lipid nanoparticle (LNP) delivery of a single nucleoprotein–targeting (NP-targeting) siRNA in nonhuman primates at advanced stages of MARV or RAVV disease to mimic cases in which patients begin treatment for fulminant disease. Sixteen rhesus monkeys were lethally infected with MARV or RAVV and treated with NP siRNA-LNP, with MARV-infected animals beginning treatment four or five days after infection and RAVV-infected animals starting treatment three or six days after infection. While all untreated animals succumbed to disease, NP siRNA-LNP treatment conferred 100% survival of RAVV-infected macaques, even when treatment began just 1 day prior to the death of the control animals. In MARV-infected animals, day-4 treatment initiation resulted in 100% survival, and day-5 treatment resulted in 50% survival. These results identify a single siRNA therapeutic that provides broad-spectrum protection against both MARV and RAVV.

Authors

Emily P. Thi, Chad E. Mire, Amy C.H. Lee, Joan B. Geisbert, Raul Ursic-Bedoya, Krystle N. Agans, Marjorie Robbins, Daniel J. Deer, Robert W. Cross, Andrew S. Kondratowicz, Karla A. Fenton, Ian MacLachlan, Thomas W. Geisbert

×

Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis
Naoto Koyanagi, … , Akihisa Kato, Yasushi Kawaguchi
Naoto Koyanagi, … , Akihisa Kato, Yasushi Kawaguchi
Published September 11, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92931.
View: Text | PDF

Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis

  • Text
  • PDF
Abstract

Herpes simplex virus–1 (HSV-1) is the most common cause of sporadic viral encephalitis, which can be lethal or result in severe neurological defects even with antiviral therapy. While HSV-1 causes encephalitis in spite of HSV-1–specific humoral and cellular immunity, the mechanism by which HSV-1 evades the immune system in the central nervous system (CNS) remains unknown. Here we describe a strategy by which HSV-1 avoids immune targeting in the CNS. The HSV-1 UL13 kinase promotes evasion of HSV-1–specific CD8+ T cell accumulation in infection sites by downregulating expression of the CD8+ T cell attractant chemokine CXCL9 in the CNS of infected mice, leading to increased HSV-1 mortality due to encephalitis. Direct injection of CXCL9 into the CNS infection site enhanced HSV-1–specific CD8+ T cell accumulation, leading to marked improvements in the survival of infected mice. This previously uncharacterized strategy for HSV-1 evasion of CD8+ T cell accumulation in the CNS has important implications for understanding the pathogenesis and clinical treatment of HSV-1 encephalitis.

Authors

Naoto Koyanagi, Takahiko Imai, Keiko Shindo, Ayuko Sato, Wataru Fujii, Takeshi Ichinohe, Naoki Takemura, Shigeru Kakuta, Satoshi Uematsu, Hiroshi Kiyono, Yuhei Maruzuru, Jun Arii, Akihisa Kato, Yasushi Kawaguchi

×

No evidence of HIV replication in children on antiretroviral therapy
Gert U. Van Zyl, … , John W. Mellors, Mary F. Kearney
Gert U. Van Zyl, … , John W. Mellors, Mary F. Kearney
Published September 11, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI94582.
View: Text | PDF

No evidence of HIV replication in children on antiretroviral therapy

  • Text
  • PDF
Abstract

It remains controversial whether current antiretroviral therapy (ART) fully suppresses the cycles of HIV replication and viral evolution in vivo. If replication persists in sanctuary sites such as the lymph nodes, a high priority should be placed on improving ART regimes to target these sites. To investigate the question of ongoing viral replication on current ART regimens, we analyzed HIV populations in longitudinal samples from 10 HIV-1–infected children who initiated ART when viral diversity was low. Eight children started ART at less than ten months of age and showed suppression of plasma viremia for seven to nine years. Two children had uncontrolled viremia for fifteen and thirty months, respectively, before viremia suppression, and served as positive controls for HIV replication and evolution. These latter 2 children showed clear evidence of virus evolution, whereas multiple methods of analysis bore no evidence of virus evolution in any of the 8 children with viremia suppression on ART. Phylogenetic trees simulated with the recently reported evolutionary rate of HIV-1 on ART of 6 × 10–4 substitutions/site/month bore no resemblance to the observed data. Taken together, these data refute the concept that ongoing HIV replication is common with ART and is the major barrier to curing HIV-1 infection.

Authors

Gert U. Van Zyl, Mary Grace Katusiime, Ann Wiegand, William R. McManus, Michael J. Bale, Elias K. Halvas, Brian Luke, Valerie F. Boltz, Jonathan Spindler, Barbara Laughton, Susan Engelbrecht, John M. Coffin, Mark F. Cotton, Wei Shao, John W. Mellors, Mary F. Kearney

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 7
  • 8
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts