Concise Communication

Abstract

Novel approaches for adjunctive therapy are urgently needed for infections complicated by antibiotic-resistant pathogens and for patients with compromised immunity. Necrotizing fasciitis (NF) is a destructive skin and soft tissue infection. Despite treatment with systemic antibiotics and radical debridement of necrotic tissue, lethality remains high. The key iron regulatory hormone hepcidin was originally identified as a cationic antimicrobial peptide (AMP), but its putative expression and role in the skin, a major site of AMP production, has never been investigated. We report here that hepcidin production is induced in the skin of patients with Group A Streptococcal (GAS) NF. In a GAS-induced NF model, mice lacking hepcidin in keratinocytes failed to restrict systemic spread of infection from an initial tissue focus. Unexpectedly, this effect was due its ability to promote production of the CXCL1 chemokine by keratinocytes resulting in neutrophil recruitment. Unlike CXCL1, hepcidin is resistant to degradation by major GAS proteases and could therefore serve as a reservoir to maintain steady state levels of CXCL1 in infected tissue. Finally, injection of synthetic hepcidin at the site of infection can limit or completely prevent systemic spread of GAS infection suggesting that hepcidin agonists could have a therapeutic role in NF.

Authors

Mariangela Malerba, Sabine Louis, Sylvain Cuvellier, Srikanth Mairpady Shambat, Camille Hua, Camille Gomart, Agnès Fouet, Nicolas Ortonne, Jean-Winoc Decousser, Annelies S. Zinkernagel, Jacques R.R. Mathieu, Carole Peyssonnaux

×

Abstract

A number of highly potent and broadly neutralizing antibodies (bNAbs) against the human immunodeficiency virus (HIV) have recently been shown to prevent transmission of the virus, suppress viral replication, and delay plasma viral rebound following discontinuation of antiretroviral therapy in animal models and infected humans. However, the degree and extent to which such bNAbs interact with primary lymphocytes have not been fully delineated. Here, we show that certain glycan-dependent bNAbs, such as PGT121 and PGT151, bind to B, activated T, and natural killer (NK) cells of HIV-infected and -uninfected individuals. Binding of these bNAbs, particularly PGT121 and PGT151, to activated CD4+ and CD8+ T cells was mediated by complex-type glycans and was abrogated by enzymatic inhibition of N-linked glycosylation. In addition, a short-term incubation of PGT151 and primary NK cells led to degranulation and cellular death. Our data suggest that the propensity of certain bNAbs to bind uninfected/bystander cells has the potential for unexpected outcomes in passive-transfer studies and underscore the importance of antibody screening against primary lymphocytes.

Authors

Jana Blazkova, Eric W. Refsland, Katherine E. Clarridge, Victoria Shi, J. Shawn Justement, Erin D. Huiting, Kathleen R. Gittens, Xuejun Chen, Stephen D. Schmidt, Cuiping Liu, Nicole Doria-Rose, John R. Mascola, Alonso Heredia, Susan Moir, Tae-Wook Chun

×

Abstract

In order to determine whether the glucose-alanine cycle regulates rates of hepatic mitochondrial oxidation in humans, we applied positional isotopomer NMR tracer analysis (PINTA) to assess rates of hepatic mitochondrial oxidation and pyruvate carboxylase flux in healthy volunteers following both an overnight (12 hours) and a 60-hour fast. Following the 60-hour fast, rates of endogenous glucose production and mitochondrial oxidation decreased, whereas rates of hepatic pyruvate carboxylase flux remained unchanged. These reductions were associated with reduced rates of alanine turnover, assessed by [3-13C]alanine, in a subgroup of participants under similar fasting conditions. In order to determine whether this reduction in alanine turnover was responsible for the reduced rates of hepatic mitochondrial oxidation, we infused unlabeled alanine into another subgroup of 60-hour fasted subjects to increase rates of alanine turnover, similar to what was measured after a 12-hour fast, and found that this perturbation increased rates of hepatic mitochondrial oxidation. Taken together, these studies demonstrate that 60 hours of starvation induce marked reductions in rates of hepatic mitochondrial oxidation, which in turn can be attributed to reduced rates of glucose-alanine cycling, and reveal a heretofore undescribed role for glucose-alanine in the regulation of hepatic mitochondrial oxidation in humans.

Authors

Kitt Falk Petersen, Sylvie Dufour, Gary W. Cline, Gerald I. Shulman

×

Abstract

Myocardin (MYOCD) is the founding member of a class of transcriptional co-activators that bind serum response factor to activate gene expression programs critical in smooth muscle (SM) and cardiac muscle development. Insights into the molecular functions of MYOCD have been obtained from cell culture studies and, to date, knowledge about in vivo roles of MYOCD comes exclusively from experimental animals. Here, we defined an often lethal congenital human disease associated with inheritance of pathogenic MYOCD variants. This disease manifested as a massively dilated urinary bladder, or megabladder, with disrupted SM in its wall. We provided evidence that monoallelic loss-of-function variants in MYOCD caused congenital megabladder in males only, whereas biallelic variants were associated with disease in both sexes, with a phenotype additionally involving the cardiovascular system. These results were supported by co-segregation of MYOCD variants with the phenotype in four unrelated families, by in vitro transactivation studies where pathogenic variants resulted in abrogated SM gene expression, and finding megabladder in two distinct mouse models with reduced Myocd activity. In conclusion, we have demonstrated that variants in MYOCD result in human disease, and the collective findings highlight a vital role for MYOCD in mammalian organogenesis.

Authors

Arjan C. Houweling, Glenda M. Beaman, Alex V. Postma, T. Blair Gainous, Klaske D. Lichtenbelt, Francesco Brancati, Filipa M. Lopes, Ingeborg van der Made, Abeltje M. Polstra, Michael L. Robinson, Kevin D. Wright, Jamie M. Ellingford, Ashley R. Jackson, Eline Overwater, Rita Genesio, Silvio Romano, Letizia Camerota, Emanuela D'Angelo, Elizabeth J. Meijers-Heijboer, Vincent M. Christoffels, Kirk M. McHugh, Brian L. Black, William G. Newman, Adrian S. Woolf, Esther E. Creemers

×

Abstract

Angelman syndrome (AS) is a neurodevelopmental disorder characterized by intellectual disability, lack of speech, ataxia, EEG abnormalities, and epilepsy. Seizures in AS individuals are common, debilitating, and often drug-resistant. Therefore, there is an unmet need for better treatment options. Cannabidiol (CBD), a major phytocannabinoid constituent of cannabis, has antiseizure activity and behavioral benefits in preclinical and clinical studies for some disorders associated with epilepsy, suggesting that the same could be true for AS. Here we show that acute CBD (100 mg/kg) attenuated hyperthermia- and acoustically-induced seizures in a mouse model of AS. However, neither acute CBD nor a two-weeklong course of CBD administered immediately after a kindling protocol could halt the pro-epileptogenic plasticity observed in AS model mice. CBD had a dose-dependent sedative effect, but did not have an impact on motor performance. CBD abrogated the enhanced intracortical local field potential power, including delta and theta rhythms observed in AS model mice, indicating that CBD administration could also help normalize the EEG deficits observed in individuals with AS. Our results provide critical preclinical evidence supporting CBD treatment of seizures and alleviation of EEG abnormalities in AS, and will thus help guide the rational development of CBD as an AS treatment.

Authors

Bin Gu, Manhua Zhu, Madison R. Glass, Marie Rougié, Viktoriya D. Nikolova, Sheryl S. Moy, Paul R. Carney, Benjamin D. Philpot

×

Abstract

Macrophage activation in response to LPS is coupled to profound metabolic changes, typified by accumulation of the TCA cycle intermediates citrate, itaconate, and succinate. We have identified that endogenous type I IFN controls the cellular citrate/α-ketoglutarate ratio and inhibits expression and activity of isocitrate dehydrogenase (IDH); and, via 13C-labeling studies, demonstrated that autocrine type I IFN controls carbon flow through IDH in LPS-activated macrophages. We also found that type I IFN–driven IL-10 contributes to inhibition of IDH activity and itaconate synthesis in LPS-stimulated macrophages. Our findings have identified the autocrine type I IFN pathway as being responsible for the inhibition of IDH in LPS-stimulated macrophages.

Authors

David P. De Souza, Adrian Achuthan, Man K.S. Lee, Katrina J. Binger, Ming-Chin Lee, Sophia Davidson, Dedreia L. Tull, Malcolm J. McConville, Andrew D. Cook, Andrew J. Murphy, John A. Hamilton, Andrew J. Fleetwood

×

Abstract

Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nuclear-retained mutant transcripts containing CUG expansions (CUGexp). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell–penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment of Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient–derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces high efficacy and long-lasting correction of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide-conjugates for systemic corrective therapy in DM1.

Authors

Arnaud F. Klein, Miguel A. Varela, Ludovic Arandel, Ashling Holland, Naira Naouar, Andrey Arzumanov, David Seoane, Lucile Revillod, Guillaume Bassez, Arnaud Ferry, Dominic Jauvin, Geneviève Gourdon, Jack Puymirat, Michael J. Gait, Denis Furling, Matthew J. A. Wood

×

Abstract

HIV is a major driver of Tuberculosis (TB) reactivation. Depletion of CD4+ T cells is assumed to be the basis behind TB reactivation in individuals with latent tuberculosis Infection (LTBI) co-infected with human immunodeficiency virus (HIV). Non-human primates (NHPs) coinfected with a mutant simian immunodeficiency virus (SIVΔGY), that does not cause depletion of tissue CD4+ T cells during infection, failed to reactivate TB. To investigate the contribution of CD4+ T cell depletion relative to other mechanisms of SIV-induced reactivation of LTBI, we used CD4R1 antibody to deplete CD4+ T cells in animals with LTBI without lentiviral infection. We showed that the mere depletion of CD4+ T cells during LTBI was insufficient in generating reactivation of LTBI. Instead, direct cytopathic effects of SIV resulting in chronic immune activation, along with the altered effector T cell phenotypes and dysregulated T cell homeostasis, were likely mediators of reactivation of LTBI. These results revealed important implications for controlling TB in the HIV co-infected individuals.

Authors

Allison N. Bucşan, Ayan Chatterjee, Dhiraj K. Singh, Taylor W. Foreman, Tae-Hyung Lee, Breanna Threeton, Melanie G. Kirkpatrick, Mushtaq Ahmed, Nadia Golden, Xavier Alvarez, James A. Hoxie, Smriti Mehra, Jyothi Rengarajan, Shabaana A. Khader, Deepak Kaushal

×

Abstract

Nutrient excess, a major driver of obesity, diminishes hypothalamic responses to exogenously administered leptin, a critical hormone of energy balance. Here, we aimed to identify a physiological signal that arises from excess caloric intake and negatively controls hypothalamic leptin action. We found that deficiency of the gastric inhibitory polypeptide receptor (Gipr) for the gut-derived incretin hormone GIP protected against diet-induced neural leptin resistance. Furthermore, a centrally administered antibody that neutralizes GIPR had remarkable antiobesity effects in diet-induced obese mice, including reduced body weight and adiposity, and a decreased hypothalamic level of SOCS3, an inhibitor of leptin actions. In contrast, centrally administered GIP diminished hypothalamic sensitivity to leptin and increased hypothalamic levels of Socs3. Finally, we show that GIP increased the active form of the small GTPase Rap1 in the brain and that its activation was required for the central actions of GIP. Altogether, our results identify GIPR/Rap1 signaling in the brain as a molecular pathway linking overnutrition to the control of neural leptin actions.

Authors

Kentaro Kaneko, Yukiko Fu, Hsiao-Yun Lin, Elizabeth L. Cordonier, Qianxing Mo, Yong Gao, Ting Yao, Jacqueline Naylor, Victor Howard, Kenji Saito, Pingwen Xu, Siyu S. Chen, Miao-Hsueh Chen, Yong Xu, Kevin W. Williams, Peter Ravn, Makoto Fukuda

×

Abstract

While improvements in genetic analysis have greatly enhanced our understanding of the mechanisms behind pancreatitis, it continues to afflict many families for whom the hereditary factors remain unknown. Recent evaluation of a patient with a strong family history of pancreatitis sparked us to reexamine a large kindred originally reported over 50 years ago with an autosomal dominant inheritance pattern of chronic pancreatitis, diabetes and pancreatic adenocarcinoma. Whole exome sequencing analysis identified a rare missense mutation in the gene encoding pancreas-specific protease Elastase 3B (CELA3B) that cosegregates with disease. Studies of the mutant protein in vitro, in cell lines and in CRISPR-Cas9 engineered mice indicate that this mutation causes translational upregulation of CELA3B, which upon secretion and activation by trypsin leads to uncontrolled proteolysis and recurrent pancreatitis. Although lesions in several other pancreatitic proteases have been previously linked to hereditary pancreatitis, this is the first known instance of a mutation in CELA3B and a defect in translational control contributing to this disease.

Authors

Paul C. Moore, Jessica T. Cortez, Chester E. Chamberlain, Diana Alba, Amy C. Berger, Zoe Quandt, Alice Chan, Mickie H. Cheng, Jhoanne L. Bautista, Justin Peng, Michael S. German, Mark Anderson, Scott A. Oakes

×

No posts were found with this tag.